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MUSE instrument

Instrument for ESO, VLT, Chili (First light in 2014) :

I [2D + λ ≡ 3D] imager = Integral field spectrograph

Observation of distant galaxies (thus, very young), and their possible halos
I dramatically faint except on a few characteristic lines

+ understanding of universe, galaxy formation...

2/ 41



MUSE Data

Data Cube
Stack of ∼ 3600 monochromatic images
covering 60× 60 arcsec

I spatial resolution : .2× .2 arcsec
(300× 300 pixels)

I spectral resolution : .14nm (spectral
range : 465− 930 nm)

Data Cube 300× 300× 3600
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Redshift and detection

We want to detect 1) faint galaxies, or 2) galatic halos (hydrogen gas surrounding
galaxies)

I Emission limited to a few wavelengths : Lyman-α emission line
I . . . of unknown spectral position because of redshift

Redshift : during its trip to Earth, light emitted by a galaxy moving away from us
(Universe expansion. . . ) is shifted to the red (remember the ambulance !).

Longueur d'onde

Flux

Longueur d'onde

Flux

+ Calls for detection methods adapted to these large datasets.
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1) Detection of faint galaxies : C. Meillier’s PhD

Problem
Detect faint galaxies whose position, shape,
spectrum, power, number... are unknown.

Bayesian Nonparametric approach : (marked) point process 1

I Object (galaxy) = a point (position) + marks (geometric ≈ elliptical object, and
spectral parameters)

I Object configuration = realization of a marked point process

+ naturally sparse representation of massive data fields : configuration of marked
points + noise

1. Meillier et al, IEEE TSP (2015)
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1) Detection of faint galaxies : C. Meillier’s PhD (Cont’d)

SELFI Results on HDFS data 2 : comparison with MUSE and Hubble
(HST) catalog

Total number of detected objects 298
Number of detected objects belonging to MUSE catalog 166 / 189
Number of detected objects belonging to HST catalog (166+78)
Number of detected objects not belonging to any catalog 54
... including potential galaxies 6

How to assess the significance of the detection list ?
I no ground truth to assert the detection performance !

+ need for a robust error control for these multiple inferences

2. Meillier et al, A&A (2016)
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2) Detection of galactic halo : R. Bacher’s PhD

We have n pixels (e.g. n = 2500 for a 50× 50 neighborhood) to test for :
I Which pixels have signal ? / Which pixels belong to the galactic halo ?

How to have guarantees on the detection results ?
I no ground truth to assert the detection performance !

+ need for a robust control, e.g. to guaranty the proportion of pixels among the
detected set that are really part of the target (“purity” of the detection)
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Multiplicity problem and chance correlation

Lottery

I Winning probability for a given ticket is
very low...

I But among the huge number of tickets,
the probablity that there is at least one
winning ticket is quite high !

Paul the octopus

I Paul predicts eight of the 2010 FIFA World
Cup matches with a perfect score !

I Does it really means that Paul is an
Oracle ?

+ Large-scale experiments : multiplying the comparisons dramatically increases the
probability to obtain a good match by pure chance
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Multiplicity problem for statistical testing

I T is the test statistics,
I Rα is the region of rejection at level α : if H0 is true, Pr(T ∈ Rα) = α

Multiple testing issue
I N independent statistics T1, . . . ,TN obtained under the null H0

I Probability to reject at least one of the N null hypotheses :

Pr (∃Ti ∈ Rα) = 1− Pr (T1, . . . ,TN /∈ Rα) = 1−
N∏

i=1

Pr (Ti /∈ Rα),

= 1−
N∏

i=1

(1− α) = 1− (1− α)N

I for a usual significative level α = 0.05, performing N = 20 tests gives a probability
0.64 to find a ’significative’ discovery by pure chance...

+ Pr ( at least one false positive )� Pr ( the i-th is a false positive )
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Multiplicity problem in science

The Economist, 2013, “Unreliable research”

Many published research fin-
dings in top-ranked journals
are not, or poorly, reproducible
[Ioannidis, 2005]

I if the test power is only 0.4, 40 true positives in average for 45 false positives. Is
this significant ?
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Large-Scale Hypothesis Testing [Efron, 2010]

Era of Massive Data Production
I “omics” revolution, e.g. microarrays measures expression levels of tens of

thousands of genes for hundreds of subjects
I astrophysics, e.g. MUSE spectro-imager delivers cubes of 300× 300 images for

3600 wavelengths : detecting faint sources leads to N ≈ 3× 108 tests in a
pixelwise approach

Large-Scale methodology
I statistical inference and hypothesis testing theory devolopped in the early 20th

century (Pearson, Fisher, Neyman, . . . ) for small-data sets collected by individual
scientist

+ corrections are needed to assess significancy in large-scale experiments
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P-values : an universal language for hypothesis testing

Intuitive definition
p-value ≡ probability of obtaining a result as extreme or “more extreme” than the
observed statistics, under H0

One-sided test example
I T is the test statistic, tobs an observed realization of T
I H0 rejected when tobs is too large : Rα = {t : t ≥ ηα}

p(tobs) = PrH0 (T ≥ tobs)

p

tobs

Mathematical definition
Smallest value of α such that tobs ∈ Rα

p(tobs) = inf
α
{tobs ∈ Rα}
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Property of p-values

Let P = p(T ) be the random variable. If H0 is true

PrH0 (P ≤ u) = PrH0 (T ∈ Ru) = u,

+ p-value ≡ transformation of the test statistics to be uniformly distributed under the
null (whatever the distribution of T )

Statistical hypothesis test based on p-value

H0 : p-value has a uniform distribution on [0, 1] : P ∼ U([0, 1])

H1 : p-value is stochastically lower than U([0, 1]) : PrH1 (P ≤ u) = PrH1 (T ∈ Ru) > u,

+ the smaller is p ≡ p(tobs), the more decisevely is H0 rejected

+ for a given α, H0 is rejected at level α if p ≤ α
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Counting the errors in multiple testing

I N hypothesis tests with a common procedure

Decision
H0 retained H0 rejected Total

Actual H0 true V U N0

H0 false S T N1

Total N − R R N

I N0 = # true nulls, N1 = # true alternatives
I U = # False Positives← Type I Errors
I T = # True Positives,
I R = # Rejections

How to define, and control, a global Type I Error rate/criterion ?
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False Discovery Rate FDR [Benjamini and Hochberg, 1995]

“Discovery” terminology
I R ≡ # Discoveries (Detections or Positives)
I U ≡ # False Discoveries (False Positives)← Type I errors,
I T ≡ # True Discoveries (True Positives),

Decision
H0 retained H0 rejected Total

Actual H0 true V U N0
H0 false S T N1

Total N − R R N
Definition

FDP ≡
U

R ∨ 1
, where R ∨ 1 ≡ max (R, 1)← False Discovery Proportion

FDR ≡ E [FDP] = E
[

U
R ∨ 1

]
← False Discovery Rate

+ single test errors (e.g. PFA controls in average the U/N0 ratio), or power, are
calculated horizontally in the table

+ False Discovery Rate is calculated vertically (Bayesian flavor)
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Source detection example

Multiple testing problem
Statistical linear model (source + noise) for each i = 1, . . . ,N

Xi = µ ri + εi

with µ > 0, ri ∈ {0, 1}, εi ∼ N (0, 1)

I H0 : null hypothesis ≡ absence of signal, i.e. ri = 0
I H1 : alternative hypothesis ≡ presence of signal, i.e. ri = 1

Test statistics
for each i

I Xi is the test statistics
I pi = 1− Φ(Xi ), where Φ is the standard normal cdf, is the associated p-value

How to choose a good threshold t to reject the tests s.t. pi ≤ t ?
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Ordered p-values plot for N = 100, N0 = 80, µ = 3, α = 0.1

Try something between Bonferroni and single test control : choose ti = q i
N (here

q = α = 0.1)
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Benjamini-Hochberg (BH) procedure

BH procedure 3

I Ordered p-values p(1) ≤ p(2) ≤ . . . ≤ p(N), let p(0) = 0 by convention
I For a given FDR control level 0 ≤ q ≤ 1 :

I find the largest k̂ s.t. p(k) ≤ q k
N

I reject H0 for all p(i), i = 1, . . . , k̂

Theorem
Under the independence assumption (or specific positive dependence) among the
tests, BH procedure controls the FDR at level q.

+ learning from the other experiments idea

+ “testimation problem” : blurs the line between testing and estimation

3. Benjamini and Hochberg, JRSS, Series B (1995)
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Popularity of FDR and BH procedure

1935

correction
Bonferroni

1979 1995
Benjamini
Hochberg

2001
Benjamini
Yekutieli

2013

Holm's
procedure

multiplication of FWER
control procedures FDR introduction

Control under 
independance

FDR control under 
- PRDS assumption, 
- upper bound for any dependance 

1990: beginning for DNA microarrays
increasing popularity of FDR

main application of multiple testing:
clinical trials

25000

15000

5000

Historical context and citations 4 of the seminal paper [Benjamini and Hochberg, 1995]

FDR for Big Data
Large-scale hypothesis testing in many fields

I DNA microarray, genomics, fMRI data,. . . ...
I Several works with astronomical imaging applications since the early 2000s

4. thanks to Marine Roux for the picture
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Detection of galactic halo : CGM

We want to explore the gas halo surrounding a galaxy : Circum galactic medium or
CGM).

Galaxy properties
I Spatially limited (quasi-punctual)
I Lyman emission line + spectral continuum (+ other lines)
I Known spatial and spectral (redshift) positions

Halo properties
I Hydrogen gas
I Emission only in Lyman line
I Spatial extension around the galaxy
I Lyman emission similar (in first approx.) to the galaxy one

+ multiple testing : need to explore a great number of pixels around the galaxy in
search of the Lyman signature.
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CGM detection problem

Goal : Detect a quasi-connected multipixel target, while ensuring global control of
errors
On each pixel i , detection of a positive signal using a one-sided test :{

H0 : y i = ε,
H1 : y i = αi d + ε, with αi > 0,

I ε ∈ Rl : noise vector of unknown distribution but assumed symmetrical
I d ∈ Rl : known reference (Lyman signature)
I y i ∈ Rl : spectrum vector

+ extension to sparse representation with multiple atoms dk , k = 1, . . . ,K .
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Application of BH procedure to our case
Simple but generalizable approach : matched filter test statistics {wi ≡ dT y i}1≤i≤n

I spatial, or spectral, or 3D (spatial+spectral) templates d

Example : spatial matched filter

(a) Without noise (b) Noisy image (SNR = -5dB) (c) Matched filter output
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FDR control for matched filter test statistics

Testing problem
For each pixel i , {

H0 : y i = ε,
H1 : y i = αi d + ε, with αi > 0,

Exact FDR control
Assuming

I a Gaussian noise ε ∼ N (0,Σ), with positive (component) covariance Σ ≥ 0
I a positive template d ≥ 0,

Then BH procedure apllied to matched filter statistics ensures a FDR control at
specified level q
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Issue : Misspecification of the null distribution

Deviation from the theoretical null

BH procedure requires so little : only the choice of the test statistics and its
specification when the null hypothesis is true

I theoretical null hypothesis usually derived in an idealized framework, (e.g. does
not account for complex spatial/spectral correlations, spatial inhomogeneities,
standardization...)

+ unlikely to be correctly specified in large-scale testing !

+ large-scale testing : possibility to detect and to correct possible miss-specification
of the null hypothesis

Empirical null distribution 5

Estimation of the H0 distribution : based on the observations that are the most likely
under theoretical H0

5. Efron, B., Cambridge University Press, 2010
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Learning the null distribution

Key assumptions
I noise distribution is symmetrical ;
I source contribution is positive.

Empirical p-values
Big picture : to have F̂0, the empirical
distribution law of the wi under H0, it is
sufficient to symmetrize the negative part of the
empirical distribution of the data

 

I p-value associated to the pixel i : pi = 1− F̂0(wi ).

+ We can then apply the BH procedure to the empirical p-values→ empirical BH
(EBH) 6

6. Bacher, R. et al. in IEEE TSP (2017)
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Barber and Candes procedure (BC)

BH procedure : the most well known but not always the most relevant.

A recent alternative : the BC procedure 7

Build control statistics wi that are

I symmetrical under H0, i.e. P(wi > t |i ∈ H0) = P(wi < −t |i ∈ H0),
I stochastically greater under H1, i.e. P(wi > t |i ∈ H1) > P(wi > t |i ∈ H0).

We sort wi by absolute decreasing order : |w(1)| ≥ |w(i)| ≥ |w(n)|.

We control at level q by rejecting |w(1)|, . . . , |w(k̂)
| where :

k̂ = max

{
k :

1 + #{w(i),i≤k < 0}
1 ∨#{w(i),i≤k > 0}

< q

}

7. Barber and Candes, Ann. Stat. (2015)
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Control statistics

Knockoff issue
In (BC 2015) construction of the control statistics using knockoffs

+ low power and high computational cost in high dimension.

Here we already have the following hypothesis :

I noise distribution is symmetrical.
I sources have a positive contribution

+ Easy build of the control statistics {wi ≡ dT y i}1≤i≤n.

Estimate of the False Discovery Proportion FDP (among the wi > 0 discovered in a set
A) :

F̂DP =
1 + #{i ∈ A,wi < 0}
1 ∨#{i ∈ A,wi > 0}

With these control statistics, and BC procedures can be shown to be equivalents. How
can we now gain in power ?
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COMET idea

The BC procedure sort statistics by absolute value before looking at the signs. BUT . . .
we can sort the statistics in another way, for ex. here to promote connectivity.

Algorithm
Region growth :

I start from an already detected region (galactic core)
I add to the area the new pixels of interest from the neighborhood (cf next slide)
I estimate the F̂DP on the pixels of this area
I iterate onto the new neighborhood of the extended area

I stop onto the largest set of selection with F̂DP inferior to the given FDR
I in this set of exploration A we only keep as detection pixels i with wi ≥ 0
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Selection procedure

To control FDR, the selection procedure must follow [P1] :

Post-selection symmetry [P1]
For any selected pixel j corresponding to a true null hypothesis, the control statistic wj
is symmetrically distributed.

Greedy approach proposed
At each step, the greatest statistic (in absolute value) among the neighbors is selected.
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COMET in action
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To summarize : EBH

FDR control using EBH : thresholding of p-values pondered by the number of tests

Sorted control statistics Evolution F̂DP
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To summarize : BC

FDR control using BC : sort statistics control by absolute value

Sorted control statistics Evolution F̂DP Detection map

34/ 41



To summarize : COMET

FDR control by COMET : sort statistics control using region growth

Sorted control statistics Evolution F̂DP Detection map
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COMET properties

Exact control of FDR if independence of the noise

Let the noise vectors ε1, . . . , εn be symmetrically distributed and independent. Then
the COMET procedure ensures an exact control of FDR :

E
[

U
R ∨ 1

]
≤ q

Asymptotic control if correlated noise

Under the assumption of weakly dependent noise, if the control statistics are
symmetrically distributed under H0, COMET ensures an asymptotic control of FDR

Rk 1 : MUSE data follow this second case (short-range correlations).
Rk 2 : Note that these results do not require any stationarity of the noise.
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Results (simulation)
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I Same error control
I Increase in detection power
I Power independent of total number of tests (i.e. size of explored region)
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Application to real data

Preprocessing
I continuum subtraction
I SNR enhancement

Spectral variability

Detection over a dictionary of spectral signatures
I d0 : spatial mean of galaxy core spectra.
I D : dictionary of shifts of d0.
I Spectral Angular Distance (SAD) .

SAD(d0, x) =
〈d0, x〉
||d0||||x ||

I Test statistics : max over all atoms w i = maxk SAD(dk , x i )
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Demo time !

→ https://phd.rbacher.fr/these-app/realDetect
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Conclusion

I Empirical approaches : no need to specify the law under H0 (~ non parametric
learning)

I Robust control of errors using this learning
I Simple hypotheses : noise symmetry and positivity of the source
I Take into account a spatial connectivity prior
I Generic detection method under FDR control with constraints
I Meaningful notion of “connected FDR” (“purity” of the detection)
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Thank you !
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