Characterizing shapes and motions

How can computer vision and deep learning help with astronomy image analysis?

Large scale visual data analysis

Computer vision, machine learning and deep learning

Healthcare applications

- Medical image analysis
- Looking at people and their activities
- Diagnosis & assistive technologies

Astrophysics applications

- Catalogue generation from grand surveys
- Detection, monitoring, and prediction of transient events and dynamic objects

Similar tasks

Characterising shapes

Characterising motions

Similar challenges

Scientific image properties

Scientific vs natural images

• High dynamic ranges, low contrasts

Meaning of the intensity value

Scientific image analysis

500

400 300 200

100

Need specifically designed algorithms

• Noise

Some more challenges

- Lack of ground-truth \rightarrow semi-supervised learning, transfer learning
- Can we transfer learnt models?

- Meaning of the systems and results?
 - Integrating knowledge
 - Explaining models and results

Overview: Characterising shapes and motions

Shape reconstruction

Shape analysis

Motion analysis

IReSISD: shape modelling for multimodal data

Modelling from multimodal data with heterogeneous resolutions, misalignments, and gaps

Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Registration and Modeling from Spaced and Misaligned Image Volumes. *IEEE Transactions on Image Processing*, Vol. 25, Issue 9, 2016
Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Integrated Segmentation and Interpolation of Sparse Data. *IEEE Transactions on Image Processing*, Vol. 23, Issue 1, 2014
Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Simultaneous Level Set interpolation and segmentation of short- and long-axis MRI. *MIUA*, pp. 267-272, 2010

IReSISD: shape modelling for multimodal data

Modelling from multimodal data with heterogeneous resolutions, misalignments, and gaps

Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Registration and Modeling from Spaced and Misaligned Image Volumes. *IEEE Transactions on Image Processing*, Vol. 25, Issue 9, 2016
Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Integrated Segmentation and Interpolation of Sparse Data. *IEEE Transactions on Image Processing*, Vol. 23, Issue 1, 2014
Adeline Paiement, Majid Mirmehdi, Xianghua Xie, Mark Hamilton: Simultaneous Level Set interpolation and segmentation of short- and long-axis MRI. *MIUA*, pp. 267-272, 2010

Some examples of application in astronomy

• Reconstruction of solar active regions from multispectral images

Goals:

- 3D/4D reconstruction of active regions
- Studying the mechanisms of solar activity
- Prediction of solar activity

Collaboration with Jean Aboudarham, Paris-Meudon Observatory

IReSISD: shape modelling for difficult data

Some examples of application in astronomy

- Modelling of the Martian terrain from orbital multispectral images
 - 1. 3D point cloud: stereoscopic photometry

Stereoscopic photometry – [Wikipedia]

2. Fusion of point clouds and modelling by IReSISD

3. Deep learning-based segmentation of terrain types and unmixing of compositions

Goal:

Identification of typical and abnormal geological properties

Collaboration with Sylvain Douté, Institut de Planétologie et d'Astrophysique de Grenoble

IReSISD: shape modelling for multimodal data

Overview: Characterising shapes and motions

Shape reconstruction

Shape analysis

Motion analysis

Characterising shapes: solar radio bursts

Faster R-CNN

Collaboration with Jean Aboudarham, Paris-Meudon Observatory

Shape characterisation

Adapting deep learning models to spectrograms

X

Challenges to transfer learning:

- Noise
- High dynamic range
- Low contrast

Classification results suffer from low image quality

Image enhancement? Adaptive transfer learning?

Galaxy morphology

Joint solving of interdependent tasks:

- Classification of morphology types
- Regression of morphology parameters

Galaxy Zoo model

Collaboration with Pierre-Alain Duc, Strasbourg Observatory

Shape characterisation

Structured analysis that integrates prior knowledge

- o Multi-label classification task [1]
 - Rough estimation of numerical attributes
 - Does not account for relations between parameters

• Hierarchical loss function [2]

- Structured loss for galaxy morphology characterisation (on-going work)
 - Combines classification and regression
 - Deeper hierarchy, integrate knowledge of correlated attributes

[1] S. Dieleman: My solution for the Galaxy Zoo challenge, 5 April 2014. [Online]

[2] P. Sudowe, H. Spitzer, B. Leibe: Person Attribute Recognition with a Jointly-Trained Holistic CNN Model. ICCV-W, 2015

The question of representation

- Parametric representation
 - Radio burst: duration, decrease rate, thickness...
 - Galaxy morphology: number and angle of arms, size of bar...

- Learned representation
 - Comets:

• Body pose:

Parametric representation hard to define

Robust Diffusion Map

Manifold

Kinect skeleton

The body poses of a (single) movement

• Capture relevant pose variations

Robust Diffusion Map Manifold

A. Paiement, L. Tao, S. Hannuna, M. Camplani, D. Damen, M. Mirmehdi: Online quality assessment of human movement from skeleton data. BMVC, 2014
B. Crabbe, A. Paiement, S. Hannuna, M. Mirmehdi: Skeleton-free body pose estimation from depth images for movement analysis. ChaLearn Looking at People workshop at ICCV, 2015

Using the manifold representation:

Overview: Characterising shapes and motions

Shape reconstruction

Shape analysis

Motion analysis

Mobility assessment from Kinect data

Aim: Continuous score for movement quality

Quantifying deviations to a model of "normal" movement:

[1] A. Paiement, L. Tao, S. Hannuna, M. Camplani, D. Damen, M. Mirmehdi: Online quality assessment of human movement from skeleton data. BMVC, 2014

[2] L. Tao, A. Paiement, D. Damen, M. Mirmehdi, S. Hannuna, M. Camplani, T. Burghardt, I. Craddock: A Comparative Study of Pose Representation and Dynamics Modelling for Online Motion Quality Assessment. Computer Vision and Image Understanding - SI: Assistive Computer Vision and Robotics, Vol. 148, 2016

Mobility assessment from Kinect data

Example of normal movement:

Pose score

Kinematics score

Motion characterisation

Some abnormal movements

• Left leg lead

• Freeze

Motion characterisation

Other application of modelling motions

- Behaviours of solar features
 - Discovering families of behaviours?

ROTATION 2008

Motion characterisation

Quick summary

Characterising shapes and motions

Shape reconstruction

Shape analysis

Motion analysis

Astronomy image analysis

Thank you

Contact: adeline.paiement@univ-tln.fr