
Maxime Paillassa1, Emmanuel Bertin2, and Herve Bouy1

1Laboratoire d’Astrophysique de Bordeaux [Pessac] – Université de Bordeaux, Institut national des sciences de l’Univers, Centre National de la Recherche Scientifique : UMR5804, Institut national des sciences de l’Univers, Institut national des sciences de l’Univers, Institut national des sciences de l’Univers, Institut national des sciences de l’Univers – France

2Institut d’Astrophysique de Paris – Université Paris VI - Pierre et Marie Curie, INSU, CNRS : UMR7095 – France

Résumé

We present MaxiMask, a convolutional neural network that marks contaminants in astronomical images through semantic segmentation. It has been designed to deal with a broad range of ambient conditions (seeing), PSF sampling, detectors, optics and stellar density, without human supervision. MaxiMask can identify cosmic rays, hot or bad pixels, persistence effects, satellite or plane trails, residual fringe patterns, nebulosity, saturated pixels or diffraction spikes. Training and testing data have been gathered from real data originating from various modern optical and near-infrared cameras, or simulated. We show that MaxiMask generates accurate probability maps after class re-balancing and that it achieves state-of-the-art performance on test data. MaxiMask is available on github at https://github.com/mpaillassa/maximask.

*Intervenant